Unsupervised domain adaptation (UDA) via deep learning has attracted appealing attention for tackling domain-shift problems caused by distribution discrepancy across different domains. Existing UDA approaches highly depend on the accessibility of source domain data, which is usually limited in practical scenarios due to privacy protection, data storage and transmission cost, and computation burden. To tackle this issue, many source-free unsupervised domain adaptation (SFUDA) methods have been proposed recently, which perform knowledge transfer from a pre-trained source model to unlabeled target domain with source data inaccessible. A comprehensive review of these works on SFUDA is of great significance. In this paper, we provide a timely and systematic literature review of existing SFUDA approaches from a technical perspective. Specifically, we categorize current SFUDA studies into two groups, i.e., white-box SFUDA and black-box SFUDA, and further divide them into finer subcategories based on different learning strategies they use. We also investigate the challenges of methods in each subcategory, discuss the advantages/disadvantages of white-box and black-box SFUDA methods, conclude the commonly used benchmark datasets, and summarize the popular techniques for improved generalizability of models learned without using source data. We finally discuss several promising future directions in this field.
translated by 谷歌翻译
We propose an extrinsic Bayesian optimization (eBO) framework for general optimization problems on manifolds. Bayesian optimization algorithms build a surrogate of the objective function by employing Gaussian processes and quantify the uncertainty in that surrogate by deriving an acquisition function. This acquisition function represents the probability of improvement based on the kernel of the Gaussian process, which guides the search in the optimization process. The critical challenge for designing Bayesian optimization algorithms on manifolds lies in the difficulty of constructing valid covariance kernels for Gaussian processes on general manifolds. Our approach is to employ extrinsic Gaussian processes by first embedding the manifold onto some higher dimensional Euclidean space via equivariant embeddings and then constructing a valid covariance kernel on the image manifold after the embedding. This leads to efficient and scalable algorithms for optimization over complex manifolds. Simulation study and real data analysis are carried out to demonstrate the utilities of our eBO framework by applying the eBO to various optimization problems over manifolds such as the sphere, the Grassmannian, and the manifold of positive definite matrices.
translated by 谷歌翻译
Reinforcement learning allows machines to learn from their own experience. Nowadays, it is used in safety-critical applications, such as autonomous driving, despite being vulnerable to attacks carefully crafted to either prevent that the reinforcement learning algorithm learns an effective and reliable policy, or to induce the trained agent to make a wrong decision. The literature about the security of reinforcement learning is rapidly growing, and some surveys have been proposed to shed light on this field. However, their categorizations are insufficient for choosing an appropriate defense given the kind of system at hand. In our survey, we do not only overcome this limitation by considering a different perspective, but we also discuss the applicability of state-of-the-art attacks and defenses when reinforcement learning algorithms are used in the context of autonomous driving.
translated by 谷歌翻译
探针车的使用日益增长会产生大量的GNS数据。受卫星定位技术的限制,进一步提高地图匹配的准确性是具有挑战性的工作,尤其是对于低频轨迹。当与轨迹匹配时,自我车辆的当前旅行时空信息对于数据量最少而言最有用。此外,还有大量其他数据,例如其他车辆的状态和过去的预测结果,但是很难提取有用的信息来匹配地图和推断路径。大多数地图匹配研究仅使用自我车辆的数据,而忽略了其他车辆的数据。基于它,本文设计了一种新的地图匹配方法,以充分利用“大数据”。首先,我们根据与本匹配探针的空间和时间距离将所有数据分为四组,这使我们能够对其有用性进行排序。然后,我们设计了三种不同的方法来从它们中提取有价值的信息(分数):速度和轴承的分数,历史用法的分数以及使用光谱图马尔可夫中立网络的交通状态分数。最后,我们使用修改后的TOP-K最短路径方法来搜索椭圆区域内的候选路径,然后使用Fused分数推断路径(投影位置)。我们使用中国的现实世界数据集测试了针对基线算法的建议方法。结果表明,所有评分方法都可以增强地图匹配的精度。此外,我们的方法优于其他方法,尤其是当GNSS探测频率小于0.01 Hz时。
translated by 谷歌翻译
视觉变压器(VIT)正在出现,并且在计算机视觉任务中的准确性显着提高。但是,它们的复杂架构和巨大的计算/存储需求对新硬件加速器设计方法施加了紧迫的需求。这项工作提出了基于提议的混合速度量化的FPGA感知自动VIT加速框架。据我们所知,这是探索模型量化的第一个基于FPGA的VIT加速框架。与最先进的VIT量化工作(仅无硬件加速的算法方法)相比,我们的量化在相同的位宽度下可实现0.47%至1.36%的TOP-1精度。与32位浮点基线FPGA加速器相比,我们的加速器在框架速率上的提高约为5.6倍(即56.8 fps vs. 10.0 fps),对于DeitBase的ImagEnet数据集,精度下降了0.71%。
translated by 谷歌翻译
基于AI的蛋白质结构预测管道(例如AlphaFold2)已达到了几乎实验的准确性。这些高级管道主要依赖于多个序列比对(MSA)和模板作为输入来从同源序列中学习共进化信息。但是,从蛋白质数据库中搜索MSA和模板很耗时,通常需要数十分钟。因此,我们尝试通过仅使用蛋白质的主要序列来探索快速蛋白质结构预测的极限。提出了Helixfold单一的形式将大规模蛋白质语言模型与AlphaFold2的优质几何学习能力相结合。我们提出的方法,Helixfold单个,首先预先培训是一种大规模蛋白质语言模型(PLM),使用了数以千计的主要序列利用自我监督的学习范式,将用作MSA和模板的替代方法共同进化信息。然后,通过将预训练的PLM和AlphaFold2的必需组件组合在一起,我们获得了一个端到端可区分模型,以仅从主要序列预测原子的3D坐标。 Helixfold-Single在数据集CASP14和Cameo中得到了验证,通过基于MSA的方法,具有大型同源家庭的基于MSA的方法,从而实现了竞争精度。此外,与主流管道进行蛋白质结构预测相比,Helixfold单个的时间比主流管道的时间少得多,这表明其在需要许多预测的任务中的潜力。 HelixFold-Single的守则可在https://github.com/paddlepaddle/paddlehelix/tree/dev/dev/pprotein_folding/helixfold-single上获得,我们还在https://paddlehelix.baidu.com上提供稳定的Web服务。 /app/drug/protein-single/prevast。
translated by 谷歌翻译
文本对象的重新识别(REID)旨在通过文本描述搜索感兴趣的身份的行人图像。由于丰富的模式内变化和明显的模式间差异,这是具有挑战性的。现有作品通常忽略两种方式之间的特征粒度差异,即,视觉特征通常是细粒度的,而文本特征则粗糙,这主要负责大型模式间间隙。在本文中,我们提出了一个基于变形金刚的端到端框架,以学习两种模式的粒度统一表示,称为LGUR。 LGUR框架包含两个模块:基于字典的粒度比对(DGA)模块和基于原型的粒度统一(PGU)模块。在DGA中,为了使两种模式的粒度对齐,我们引入了一个多模式共享词典(MSD)以重建视觉和文本特征。此外,DGA还具有两个重要因素,即跨模式指导和以前景为中心的重建,以促进MSD的优化。在PGU中,我们采用一组共享和可学习的原型作为查询,以提取粒度统一特征空间中这两种方式的多样化和语义对齐特征,从而进一步促进了REID的性能。综合实验表明,我们的LGUR在Cuhk-Pedes和ICFG-Pedes数据集上始终以大幅度的优势优于最先进的东西。代码将在https://github.com/zhiyinshao-h/lgur上发布。
translated by 谷歌翻译
文本逻辑推理,尤其是具有逻辑推理的问题答案(QA)任务,需要对特定逻辑结构的认识。段落级别的逻辑关系代表了命题单位之间的必要或矛盾(例如,结论性句子)。但是,由于当前的质量检查系统专注于基于实体的关系,因此无法探索此类结构。在这项工作中,我们提出了逻辑结构构成建模,以解决逻辑推理质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量请参见。网络执行两个过程:(1)利用在线话语连接以及通用逻辑理论的逻辑图构造,(2)通过图形网络学习产生结构性逻辑特征的逻辑表示。该管道应用于一般编码器,其基本功能与高级逻辑功能相结合,以进行答案预测。在三个文本逻辑推理数据集上进行的实验证明了dagns内置的逻辑结构的合理性以及学到的逻辑特征的有效性。此外,零射传输结果显示了特征的通用性,可看不见的逻辑文本。
translated by 谷歌翻译
Establishing the limiting distribution of Chatterjee's rank correlation for a general, possibly non-independent, pair of random variables has been eagerly awaited to many. This paper shows that (a) Chatterjee's rank correlation is asymptotically normal as long as one variable is not a measurable function of the other, (b) the corresponding asymptotic variance is uniformly bounded by 36, and (c) a consistent variance estimator exists. Similar results also hold for Azadkia-Chatterjee's graph-based correlation coefficient, a multivariate analogue of Chatterjee's original proposal. The proof is given by appealing to H\'ajek representation and Chatterjee's nearest-neighbor CLT.
translated by 谷歌翻译
Low-rankness plays an important role in traditional machine learning, but is not so popular in deep learning. Most previous low-rank network compression methods compress the networks by approximating pre-trained models and re-training. However, the optimal solution in the Euclidean space may be quite different from the one in the low-rank manifold. A well-pre-trained model is not a good initialization for the model with low-rank constraints. Thus, the performance of a low-rank compressed network degrades significantly. Compared to other network compression methods such as pruning, low-rank methods attracts less attention in recent years. In this paper, we devise a new training method, low-rank projection with energy transfer (LRPET), that trains low-rank compressed networks from scratch and achieves competitive performance. First, we propose to alternately perform stochastic gradient descent training and projection onto the low-rank manifold. Compared to re-training on the compact model, this enables full utilization of model capacity since solution space is relaxed back to Euclidean space after projection. Second, the matrix energy (the sum of squares of singular values) reduction caused by projection is compensated by energy transfer. We uniformly transfer the energy of the pruned singular values to the remaining ones. We theoretically show that energy transfer eases the trend of gradient vanishing caused by projection. Third, we propose batch normalization (BN) rectification to cut off its effect on the optimal low-rank approximation of the weight matrix, which further improves the performance. Comprehensive experiments on CIFAR-10 and ImageNet have justified that our method is superior to other low-rank compression methods and also outperforms recent state-of-the-art pruning methods. Our code is available at https://github.com/BZQLin/LRPET.
translated by 谷歌翻译